PDF下载 下载

跨期套利(期货)

阅读 30455

跨期套利策略

1. 原理

什么是跨期套利?

跨期套利是指在同益市场利用标的相同、交割月份不同的商品期货合约进行长短期套利的策略。跨期套利本质上是一种风险对冲,当价格出现单方向变动时,单边投机者要承担价格反向变动的风险,而跨期套利过滤了大部分的价格波动风险,只承担价差反向变动的风险。

跨期套利相较于跨品种套利而言更复杂一些。跨期套利分为牛市套利、熊市套利、牛熊交换套利。每种套利方式下还有正向套利和反向套利。不管是哪种套利方式,其核心都是认为“价差会向均值回归”。因此,在价差偏离均值水平时,按照判断买入被低估的合约,卖出被高估的合约。

套利方法

套利方法可归结为以下几类:

价差(近-远)未来价原理操作
偏大上涨/下跌近月增长 >远月增长买近卖远
近月下跌 < 远月下跌
偏小上涨/下跌近月增长 < 远月增长卖近买远
近月下跌 > 远月下跌

协整检验

要想判断两个序列之间是否存在关系,需要对序列进行协整检验。以大商所豆粕为例,对DCE.m1701和DCE.m1705进行检验。

1701合约的t值 = -2.1176,临界值为-3.4769,t > 临界值说明序列平稳。
1705合约的t值 = -2.5194,临界值为-3.4769,t > 临界值说明序列平稳。

两个序列都为单整序列,残差序列也平稳,说明二者之间存在长期稳定的均衡关系。

2. 策略步骤

第一步:选择同一标的不同月份的合约,本策略以豆粕为例。
第二步:计算价差的上下轨。
第三步:设计信号。价差上穿上轨,买近卖远;价差下穿下轨,卖近买远。
价差达到止损点时平仓,价差回归到均值附近时平仓。

回测标的:DCE.m1801、DCE.m1805
回测时间:2017-09-25 到 2017-10-01
回测初始资金:200万
注意:若修改回测期,需要修改对应的回测标的。

3. 策略代码

  1. # coding=utf-8
  2. from __future__ import print_function, absolute_import, unicode_literals
  3. import numpy as np
  4. from gm.api import *
  5. '''
  6. 通过计算两个真实价格序列回归残差的0.9个标准差上下轨,并在价差突破上轨的时候做空价差,价差突破下轨的时候做多价差
  7. 并在回归至标准差水平内的时候平仓
  8. 回测数据为:DCE.m1801和DCE.m1805的1min数据
  9. 回测时间为:2017-09-25 08:00:00到2017-10-01 15:00:00
  10. '''
  11. def init(context):
  12. context.goods = ['DCE.m1801', 'DCE.m1805']
  13. # 订阅品种数据
  14. subscribe(symbols = context.goods,frequency = '1d',count = 31,wait_group = True)
  15. def on_bar(context, bars):
  16. # 获取历史数据
  17. close_1801 = context.data(symbol=context.goods[0], frequency='1d', count=31, fields='close')['close'].values
  18. close_1805 = context.data(symbol=context.goods[1], frequency='1d', count=31, fields='close')['close'].values
  19. # 计算上下轨
  20. spread = close_1801[:-2] - close_1805[:-2]
  21. spread_new = close_1801[-1] - close_1805[-1]
  22. up = np.mean(spread) + 0.75 * np.std(spread)
  23. down = np.mean(spread) - 0.75 * np.std(spread)
  24. up_stop = np.mean(spread) + 2 * np.std(spread)
  25. down_stop = np.mean(spread) - 2 * np.std(spread)
  26. # 获取仓位
  27. position1801_long = context.account().position(symbol = context.goods[0],side =PositionSide_Long)
  28. position1801_short = context.account().position(symbol = context.goods[0],side =PositionSide_Short)
  29. # 没有仓位时
  30. if not position1801_short and not position1801_long:
  31. # 上穿上轨时,买近卖远
  32. if spread_new > up:
  33. order_volume(symbol=context.goods[0], volume=1, order_type=OrderType_Market, side=OrderSide_Buy, position_effect=PositionEffect_Open)
  34. order_volume(symbol=context.goods[1], volume=1, order_type=OrderType_Market, side=OrderSide_Sell, position_effect=PositionEffect_Open)
  35. print('上穿上轨,买近卖远')
  36. # 下穿下轨时,卖近买远
  37. if spread_new < down:
  38. order_volume(symbol=context.goods[0], volume=1, order_type=OrderType_Market, side=OrderSide_Sell, position_effect=PositionEffect_Open)
  39. order_volume(symbol=context.goods[1], volume=1, order_type=OrderType_Market, side=OrderSide_Buy, position_effect=PositionEffect_Open)
  40. print('下穿下轨,卖近买远')
  41. # 价差回归到上轨时,平仓
  42. if position1801_long:
  43. if spread_new <= np.mean(spread):
  44. order_close_all()
  45. print('价差回归,平仓')
  46. if spread_new > up_stop:
  47. order_close_all()
  48. print('达到止损点,全部平仓')
  49. # 价差回归到下轨时,平仓
  50. if position1801_short:
  51. if spread_new >= np.mean(spread):
  52. order_close_all()
  53. print('价差回归,平全部仓')
  54. if spread_new < down_stop:
  55. order_close_all()
  56. print('达到止损点,全部平仓')
  57. if __name__ == '__main__':
  58. '''
  59. strategy_id策略ID,由系统生成
  60. filename文件名,请与本文件名保持一致
  61. mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
  62. token绑定计算机的ID,可在系统设置-密钥管理中生成
  63. backtest_start_time回测开始时间
  64. backtest_end_time回测结束时间
  65. backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
  66. backtest_initial_cash回测初始资金
  67. backtest_commission_ratio回测佣金比例
  68. backtest_slippage_ratio回测滑点比例
  69. '''
  70. run(strategy_id='strategy_id',
  71. filename='main.py',
  72. mode=MODE_BACKTEST,
  73. token='token_id',
  74. backtest_start_time='2017-07-01 08:00:00',
  75. backtest_end_time='2017-12-31 16:00:00',
  76. backtest_adjust=ADJUST_PREV,
  77. backtest_initial_cash=2000000,
  78. backtest_commission_ratio=0.0001,
  79. backtest_slippage_ratio=0.0001)

4. 回测结果

设定初始资金200万,手续费率为0.01%,滑点比率为0.01%。回测结果如下图所示。

回测期累计收益率-8.12%,年化收益率为-16.46%。最大回撤率为11.48%,胜率为50.00%。

注:此策略只用于学习、交流、演示,不构成任何投资建议。

0 篇笔记